有一类细胞被称为B细胞(B是指它们产生自骨髓,Bone marrow),它具有一种奇特的性质:B细胞与某种入侵者匹配得越好,它产生的后代细胞就越多。通过随机变异,子细胞与母细胞会稍有不同,而这些子细胞产生后代的能力也与它们同入侵者相匹配的程度成正比。这样就形成了达尔文自然选择机制,B细胞变得与入侵者越来越匹配,从而产生出能极为高效地搜寻和摧毁微生物罪犯的抗体。

简单参与者——B细胞、T细胞、巨噬细胞,等等——的行动可以看作某种化学信号处理网络,一旦有一个细胞识别出入侵者就会触发细胞之间产生信号雪崩,从而产生精巧而复杂的反应。

从收益或消费者满意度来看,如果有人受益,就肯定会有人受损。市场能达到均衡态就认为市场是有效的。18世纪经济学家亚当·斯密(Adam Smith)将市场的这种自组织行为称为“看不见的手”:它产生自无数买卖双方的微观行为。

复杂系统是由大量组分组成的网络,不存在中央控制,通过简单运作规则产生出复杂的集体行为和复杂的信息处理,并通过学习和进化产生适应性。

由于简单规则以难以预测的方式产生出复杂行为,这种系统的宏观行为有时也称为涌现(emergent)。这样就有了复杂系统的另一个定义:具有涌现和自组织行为的系统。复杂性科学的核心问题是:涌现和自组织行为是如何产生的。

虽然有很多书和文章使用这些术语,但是既不存在单独的复杂性科学,也不存在单独的复杂性理论。

动力系统理论(动力学,dynamics)关注的是对系统的描述和预测,其所关注的系统通过许多相互作用的组分的集体行为涌现出宏观层面的复杂变化。

同以前许多理论家一样,亚里士多德在构造理论时没有考虑实验验证。他的方法是用逻辑和常识引导理论;用实验对理论进行验证的重要性在当时还没有被认识到;亚里士多德的思想影响很大,一直统治着西方科学,直到16世纪——伽利略(图2.2)登上历史舞台。

伽利略、他之前的哥白尼以及与他同时代的开普勒是实验和观察科学的先驱。哥白尼提出行星不是围绕地球而是围绕太阳运行。(伽利略在宣扬这种观点时受到了天主教会的强烈阻挠,最后被迫公开宣布放弃。直到1992年教会才正式承认对伽利略的迫害是错误的。)

哥白尼和开普勒只研究了天体的运动,而伽利略不仅研究天上的运动,也研究地面上的,他做了一些我们现在在中学物理课上会学到的实验:单摆、沿斜面滚动的小球、自由落体、镜面光线反射。

最具革命性的是,地面上的运动定律居然也能解释天上的运动。

轮轴等简单“机械”的动作组合来解释。牛顿的工作现在被称为经典力学。力学分为两部分:描述物体如何运动的运动学(kinematic),以及解释物体为何遵循运动学定律的动力学。

牛顿的工作现在被称为经典力学。力学分为两部分:描述物体如何运动的运动学(kinematic),以及解释物体为何遵循运动学定律的动力学。

下面是著名的牛顿三大定律: 1.在任何情况下,一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 2.物体的加速度与物体的质量成反比。 3.两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。

1927年,海森堡(Werner Heisenberg)提出了量子力学中的“测不准原理”,证明不可能在准确测量粒子位置的同时,又准确测量其动量(质量乘以速度)。

混沌指的是一些系统——混沌系统——对于其初始位置和动量的测量如果有极其微小的不精确,也会导致对其的长期预测产生巨大的误差。

而对初始条件的敏感依赖性指的是,如果系统是混沌的,在测量初始位置时即使只有极其微小的误差,在预测其未来的运动时也会产生巨大的误差。对于这样的系统(飓风就是例子),一点点误差,不管多小,也会导致长期预测很不精确。

他试图解决的是所谓的三体问题(three-body problem):用牛顿定律预测通过引力相互作用的三个物体的长期运动。牛顿已经解决了二体问题。但没想到三体问题要复杂得多。

庞加莱想先试着解决三体问题。

他并没有完全成功——这个问题实在太复杂了。但是他的尝试很精彩,所以最后还是赢得了奖金。牛顿发明了微积分,而庞加莱为了解决这个问题也创建了一个新的数学分支——代数拓扑(algebraic topology)。

混沌系统中初始的不确定性到底是如何被急剧放大的呢?关键因素是非线性。

逻辑斯蒂映射中出生率和死亡率的效应被合成一个数,记作R。种群规模用“承载率”替代,记为x。这个简化模型问世之后,科学界和数学界很快就将种群规模、承载力等与现实世界的联系抛到脑后,转而着迷于这个方程本身,因为它的特性太让人震惊了。

我给出逻辑斯蒂映射的方程是为了向你展示它有多简单。事实上,它是能抓住混沌本质——对初始条件的敏感依赖性——的最简单的系统之一。

这种最终的变化位置(无论是不动点还是振荡)被称为“吸引子”,这个说法很形象,因为任何初始位置最终都会“被吸引到其中”

我们已经看到有三种不同的最终状态(吸引子):不动点、周期和混沌(混沌吸引子有时候也称为“奇怪吸引子”)。吸引子的类型是动力系统理论刻画系统行为的一种方式。

数学生物学家梅对这些惊人的特性进行了总结,与庞加莱遥相呼应: 简单的确定性方程[28](1)(即逻辑斯蒂映射)能产生类似于随机噪声的确定性轨道,这个事实有着让人困扰的实际含义。

这是一个非常深刻的负面结论,它与量子力学一起,摧毁了19世纪以来的乐观心态——认为牛顿式宇宙就像钟表一样沿着可预测的路径运行。

数学混沌还有本质上的秩序,即很多混沌系统所共有的普适性。

第一条普适性质:通往混沌的倍周期之路

不断分叉直至混沌的过程就是“通往混沌的倍周期之路”

第二条普适性质:费根鲍姆常数

常数的理论解释使用了一种复杂的数学技巧——重正化(renormalization)。

这很让人印象深刻,因为费根鲍姆的理论在算出这个数时只涉及数学,没涉及物理。正如费根鲍姆的同事卡达诺夫(Leo Kadanoff)所说的,这是“一个科学家所能遇到的最好的事情,[32]头脑中想到的东西在自然界中得到了完美的印证”。

看似混沌的行为有可能来自确定性系统,无须外部的随机源。

一些简单的确定性系统的长期变化,由于对初始条件的敏感依赖性,即使在原则上也无法预测。

虽然混沌系统的具体变化无法预测,在大量混沌系统的普适共性中却有一些“混沌中的秩序”,例如通往混沌的倍周期之路,以及费根鲍姆常数。因此虽然在细节上“预测变得不可能”,但在更高的层面上混沌系统却是可以预测的。